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On the Construction of Matter Tensors in Crystals

By J. Boumax
Laboratorium voor Technische Physica, Technische Hogeschool, Delft, the Netherlands

(Recerved 8 February 1963 and in revised form 3 April 1963)

Matter tensors, complying with the symmetry of a crystal, may be found by application of Wigner’s
theorem. For higher-order tensors a modification of Fumi’s method is useful for all classes. The
trigonal and hexagonal classes present no special difficulty. The two methods are illustrated on

a sixth-order tensor.

1. Introduction

The derivation of tensors in the several crystal classes
has been considered by many authors. The simplest
method is the direct inspection method, which is
used in the textbook of Nye (1957; ¢f. Fumi, 1952a, b).
The application to trigonal and hexagonal classes,
however, leads to rather intricate calculations. Fumi
(1952¢; ¢f. Fieschi & Fumi, 1953) has also devised
a group-theoretical method for these two crystal
systems. Only the latter method will be referred to
here as the Fumi method, the term ‘direct inspection
method’ being reserved for the former.

It is possible to modify the direct inspection method
in such a way that trigonal and hexagonal crystals
can be treated in the same way as others, at least
for second-, third- and fourth-order tensors. Fumi’s
method is more powerful for higher-order tensors.
But here it is not necessary to study each crystal
class in detail, as he has done. It will be shown that
quite simple calculations define the tensors for all
classes at the same time.

This paper will not deal with detailed group-
theoretical studies; thus the papers by Jahn (1937,
1949) and Bhagavantam (1952) will not be used.
For the sake of completeness, attention is drawn to
the work of Sirotin (1960), who builds the tensors
from a collection of so-called basic tensors.

1. THE MODIFIED DIRECT METHOD

2. Basic concepts

It is well known that tensor components transform
as products of coordinates. Let us denote temporarily
the coordinates x, y, z by x;, ¢=1, 2, 3; then a trans-
formation of space (e.g. a rotation) is given by

x; = wuix(S)xx

where s is the symbol for the transformation we
consider. Now the transformation of a tensor com-
ponent #; is the same as the transformation of the
product zix1,sxs, 1 of the coordinates of three vectors
r, ri, ra.

tzfjk’—‘uip(s)ujq(s)ukr(s)tpqr .

We may denote this transformed component by #;5z(s).
A matter tensor in a crystal must be invariant
with respect to all symmetry operations s of the class
we consider. Let T be an invariant tensor. The direct
method puts
Tiyr(8) =T i

for all operations. This method is in general very
simple, but it is rather unwieldy for trigonal and
hexagonal classes. Let us take as an example the
rotation of 180° around the Z axis:

’

’ ’
)= — X1, o= —X2, T3=T3 .
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It follows that
T112 = - T112 =0 .

We may start, however, with an arbitrary tensor t.
From this tensor we construct an invariant tensor T
by using Wigner’s theorem (Fumi, 1952; Wigner,
1931). We find

Tige = 2 tize(s) (1)
$

summed over all operations of the class, including
the identity. For, as one of these transformations is
applied to T, each term of the sum shifts to another
term, and the sum remains the same. Taking the
same example as above, we find

Tiuz=tie—t112=0,

the first term at the right hand belonging to the
identity, the second to the rotation.

Now for a group of high order the summation (1)
would be very tedious. But it is sufficient to study
the cyclic groups 2 (C2), 3 (Cs), 4 (Cs) and 6 (Cs)
and in some cases 4 (S4). This is also the procedure
of the direct method. Later on we may consider other
groups.

3. Notation

From now on the coordinates will be denoted by
z, Y, 2. A component will be written:

lz,y,z OF Z,Y,2

if there is no symmetry in the indices. A symmetric
tensor of the second order may be written:

tzy Or 2Y;

this tensor transforms as the product r? instead of
rr; for a non-symmetric tensor.

The piezoelectric tensor, which is symmetric in
two indices, may be written:

lzy,z OF XY, T
and this component transforms as the product
xyx1

belonging to two vectors r, r1.
The elastic tensor is now written as

(zy, 22) ,

the brackets indicating that the tensor is symmetric
in the first and the second pair of indices. The trans-
formation is given by the product

TYr121 + 219122 .

It is, however, simpler to consider only the first term,
belonging to zy, xz. Afterwards the components xy, xz
and xz, xy may be replaced by one component, being
equal for the elastic tensor.

4. The construction of invariant tensors

Let us begin with the components zz, yy, vy of a
symmetric second order tensor, which is to be invariant
with respect to an n-tuple axis along the Z axis.
The symmetry operations are given by

z' =2z cos kp—y sin ke
y' =z sin ke+y cos ke (2)

where ¢ =27z/n, and k ranges from 0 to n—1.
Then the transformation of the components is the
same as for the products

a2z’ =z cos? ko —2xy cos ke sin ko+yy sin? ke
yy' =xx sin? ke +2xy cos ke sin ko4 yy cos? ke
zy' =az cos ko sin ko +zy (cos? ke —sin? ke)

—yy cos ke sin ke . (3)

The invariant tensor components are found by
summing over k. Higher order tensors will lead to
sums of higher powers of the sine and cosine functions.
If these sums are calculated beforehand, the con-
struction is rather easy. The results of these calcula-
tions are given in Table 1, and the method of evalua-
tion in the Appendix.

With regard to Table 1 it should be noted that all
sums containing odd powers of the sine are zero,
and also that

2 coskp=0.
k

The blanks in the columns towards the right hand side
mean that the result is the same as for the general
value of n. If the results are different, they are noted
under the appropriate heading. We may remark that
the columns n=2,3,4 of 6 are best calculated by
direct summation.

Table 1. Components of the invariant tensors

n
p=2n/n (general) n=2 n=3 n=4 n=6

X cos? ko in 2
Xsin? ko in 0
Zcos® kg 0 3
X cos ko sin® ko 0 -3
X cost ko n 2 2
2 cos? kg sin? ko %n 0 0

i 3
L sint kg n 0 2
X cos ko 0 15
2 cos® ko sin? ko 0 -
2 cos ko sint kg 0 -2
Zcost ko TE'G"" 2 18 2 f%_g
X cost ko sin? ko Tan 0 1.3 0 3
Zcos?kpsintkyp  an 0 3.3 0 2
X sin® ko En 0 3.2 2 2

The general derivation is useful for devising those
values of n where different sums are found.
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If this table is applied to the expressions (3) we
find (omitting the factor =)

sz = %(ta:a: + tyy)
Tyy="4({zz+tyy) =Tzz
sz = 0 ;

only for n=2 we find no relations between the three
components.

As n is arbitrary we may put also n=o0; this gives
the tensor invariant for a space of cylindrical sym-
metry. Thus, the blanks in the last four columns
indicate that the tensor components constructed with
those sums possess the same properties as those in a
cylindrical space.

5. Some examples

It will be sufficient to study the elasticity tensor
(xz, xz). The 21 components will be considered
separately after having been classified according to
the number of 2’s appearing in the components.

(1) (zz, 2z) is invariant and (xz, 22) and (yz, 22) are
zZero.

(2) (xz, 2z2), (yy, zz) and (zy, zz) have the same prop-
erties as the symmetric tensor of the second order.
The same is true for (xz, x2), (yz,yz) and (xz, y2).
With exception of class 2 (Cz) we find that the first
two components of each set are equal, and the third
is zero.

(3) (x2, 22), (x, y2), (yy, x2), (yy, Y2), (%Y, 22), (*Y, Y2)
are transformed as the corresponding components of
the third-order piezoelectric tensor. This transforma-
tion is found with help of the products x2xiz1 elc.
The component z is invariant; thus the transformation
of x2z; will be sufficient. As all transformed com-
ponents possess products of the third degree, they
must be zero, as may be seen from Table 1, except
for n=3. In this case we proceed as follows.

(w2121 (k) = (22 cos? ke — 2y cos ke sin kg
+y2 sin2 ko) (21 cos ke —y1 sin kg)z: .

When working out this expression, we need retain
only the terms with even powers of the sine. Thus
22 has only to be multiplied by 21 etc. The result is

T2z, 22)= 32z, 22) — 2 . $(zy, y2) — Sy, z2) -
From

(xyy121) (k) =[22 cos ke sin ke +xy (cos? ke —sin? k)
—y2 cos ko sin ke](z: sin ke +y1 cos kg

we find
T(zy, yz2)= — E?it(xz, zz) +2. %t(xy. RS %t(w,n) = T(xx. zz) .
The final result is

T(xx,xz)= - T(xy,yZ) = T(w,:u)
Ty, y0=— T(:w,xZ)= =T (22,92 -

AC17—2

(4) (z, z2), (22, yY), (¥Y, yy), (x2, 2Y), (4Y, *Y), (*Yy, Y)
will contain in their transforms terms of the fourth

degree in the goniometric functions. Their properties
will be the same for all axes, except n=2 or 4. The
general case will exhibit a new feature.

For (xz, zz) we find, omitting the factor n

T (2, 22)= $(zz, 22) + F(zz, yo) + F(ay, 20)

+%t(yy.:m)+%t(yy.w)
from the product a2xf.

Now ¢zz, yy) =twy, zz)- Moreover we shall find in all
equations the same factors for (zz, xx) and for (yy, yy),
and we put

tiwz, z2) by, ) =20 @z, 20) -

For T\(yy,uy) we find the same expression; thus
T 2z, 220=Twy, u0) = ' (22, 22) + Hzz, yo) + Hhizy, 20 -
In the same way we derive

T 2z, yy) = 2t (22, 20) + §t(zz, yo) — $tizy, 2)
T 2y, 2= 3t @z, 22) — iz, yo) + $bizy, 20) -

There would not be any relation between the three
components, if these equations were independent.
But the determinant is zero. If we still try to solve
¢’ from these equations in 7'zz, z2), T (zz, yy) a0d T2y, 2y
we find in the numerator

14‘T(xx, zx) — i‘T(u, yy) — %T(zy, zy)

and as the denominator is zero, being the determinant,
the form given above must be zero too, yielding the
well known relation between the three components.

The same method may be applied to higher-order
tensors, e.g. (zx, xx, zx), but this can be better post-
poned to part IL.

6. Other classes

The evaluation of tensors which are invariant with

respect to 4 (S4) does not differ from that for 4 (C4) if

the number of z’s is even. If a component contains

an odd number of 2’s, the sum 3 (—1)*cos? kg sin"ke
k

has to be evaluated. This is readily done for this
simple rotation. The method does not differ from
the direct method for other classes. It will suffice
to give two examples. The class 32 (D3) has a group
of 6 elements, which may be written as the product
of three elements, belonging to a ternary axis, u,
and two elements v, belonging to a diad axis along
the X axis, s=uw.

The elements u are the identity, the rotation of
120° and of 240°, whereas v stands for the identity
and the rotation of 180°.

We evaluate

T =2 t(u)
u

which is the invariant tensor with respect to 3.
Then the tensor T is found by
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T=XT'(v)=2t(vu)

which means in this case that all components, for
which the number of y and z together is odd, are
cancelled. Of course the summation over » may be
done first, as vu and uv give the same elements of 32.
From the class 222 we pass to 23 () by mul-

tiplying with the elements of a ternary axis along the
body diagonal:

=z, Y=y, 2'=2

2=y, y=2 2=z

2=z, y =z, 2=y,

which means that the tensor is found from the tensor
for 222 by summing a component with its transformed
ones. These are found by cyclic permutation of the
indices z, y and 2.

II. THE MODIFIED FUMI METHOD
7. Description of the method

The method described above constructs linear com-
binations of tensor components which are invariant
for the group we consider.

Now we may find other combinations, independent
of the invariant ones, and these combinations must
be zero. This is the method of Fumi, but we shall
derive these combinations in another way.

We need only to consider coordinates 2 and y,
and the cyclic groups. For other classes the method
explained in § 6 will serve.

Theorem

The tensor components can be combined into pairs
of linear combinations, which, considered as vectors,
rotate over an angle mg, (m—2)g, ..., ¢ or 0, if the
space xzy is rotated over an angle g, and the order
of the tensor in x and y is m. We will refer to them
as m-vectors. A O-vector is an invariant for each
rotation, and may appear single.

The proof follows from the method of construction.

The second order tensor has the components
% %, Y5 Y, X5 Y, Y-

We write

x=rcosy, y=rsiny

then a rotation means that ¢ is replaced by v+ ¢.
The second order tensor is transformed as the
product za; etc.
It follows that

221+ yy1=17r1 cos (p—y1)
X1 —yy1=7rr1 cos (P+y1)
2y1+yri=7r1 sin (p+y1)
xy1—yri=rry sin (y1—vp) .

Rotation means that ¢ is added to y and to y;
thus the first and last combination are invariants,

the second and third form a 2-vector. These are zero
for an arbitrary rotation, and we find for the tensor
components:

X, =YY, X, Y=-—Y,x.

But this is not true if ¢=180°. Then the double
rotation is equivalent to the identity, the four com-
binations are invariants, and no relation exists
between the tensor components. We remark that the
factors r, 1 are not necessary, and they will be left out.

The symmetric tensor leads to

x2+y2=1
22 —y2=cos 2y
2zy =sin 2y .

Except for ¢=180° the 2-vector must be zero,
which yields:
xx=yy, xy=0.
We turn now to the piezoelectric tensor xz, 2, which
is transformed as the product x2z;. We study the

products of the invariant 22+4y2 and the 2-vector
22 —y2, 2zy with the vector z1, 1. The result is

(224 y?)21=cos P,

(@2 +y2)y1=sin 1

(22— y?)x1 — 22yy1 = cos (29 + 1)

2zyx1 4+ (22— y?)y1=sin 2y +y1)

(2% —y?)a1 + 2xyy1 =cos (29— )

2zyx, — (x® —y2)y1=sin (29 —y1)
with two vectors and one 3-vector. The last four are
found in the same way as above, the vector z, y being
replaced by the 2-vector: cos2y, sin2y. In the general
case all combinations must be zero, and all tensor

components are zero too. But for n=3 the 3-vector
is an invariant, and we are left with

xx, t+yy, =0, xz,y+yy, y=0
xx, x—yy, v+ 22y, y=0
2zy, x—xx, y+yy, y=0
from which the well known properties result.
Our last example will be the symmetric third-order
tensor with four components, vez.
zxx as x¥=cosdyp
xxy as x%y=cos®ysiny
2yy as xy?=cosyp sinyp
yyy as yP=sindy.
From
cos 3y =cos® p—3 cos p sin2yp
sin 3y=3 cos? y sin p —sind p
we find the 3-vector zxz—3ayy, 3axay —yyy.
The components of the vector are
zxx+2xyy and zxy+yyy

and for n=3 only these combinations are zero.
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8. A sixth-order tensor

We shall apply the method to the tensor (zz, zx, zx)
which is symmetric in the three pairs zx. As before,
we classify the components according to the number
of 2’s. It is seen at once that (zz, 2z, 22) is invariant and

(w2, 22, 22) = (yz, 22, 22)=0 .

Further

I(a)

()

(xx’ zz’ zz)’ (yy’ zz’ zz), (xy, zz’ zz)
have the same properties as zx; yy; zy.

The same is true for
(w2, w2, 22), (yz, Yz, zz) and (xz, yz, zz).

I(a) (wz, 2z, 22), (v, yz, 22), (yy, vz, 22), (yy, ¥z, 22),

I1(b)

(xy, 2, 2z) and (xy, yz, 2z) transform as az, x
etc., the piezoelectric tensor.

(xz, vz, x2), (%z, 22, Y2), (2%, Y2, Y2), (Y2, Yz, Y=)
transform as (zxx) which we considered in § 7.

IIl(a) (zz, xx, 22), (2, yy, 22), (YY, ¥y, 22), (xz, 2Y, 22),

II1(b)

v

(yy, xy, zz) and (xy, xy, 2z) may be replaced by
the elastic tensor (zz, zx).

(xx, 22, 22), (%2, Y2, Y2), (YY, x2, 22), (YY, Y2, Y2),
(xx, xz, y2), (2y, 22, 22), (yy, 22, yz), (xy, yz, yz)
and (xy, zz, yz) represent the tensor (xz, z, x),
which may be treated by both methods.

The result is for the general case, including
n=3 or 6:

(xx, 22, yz) = (%Y, 22, 22) = (YY, 2, Y2) =
(xy, yz, yz)=0

(xx, 22, 22) = (yy, Y2, Y2)

(xz, Yz, yz)=(yy, 2z, 22)

(xz, 22, x2) — (22, Y2, Y2) =2(2Y, X2, YZ) .

This is the same as III(a), if we replace
(xz, yz, yz) and (yy, 2z, 22) by (xz, yy, 22) etc.

(v, 2z, 22), (22, 22, Y2), (27, YY, 22), (T2, YY, Y2),
(WY, vy, x2), (yy, Yy, y2), (az, 2y, x2), (22, TY, Y2),
Yy, zy, x2), (yy, vy, yz), (vy, xY, x2), (TY, Y, Y2).
These components will be zero, in virtue of
Table 1. Only for =3 (and n=>5) this will not
be the case. The Fumi method is better suited
to the study of this tensor. The same is true for:

(2, 22, 22), (22, 22, YY), (22, YY, YY), (¥Y> Y9> ¥Y);
(xz, 2z, 2y), (22, Yy, 2Y), (YY, Y¥, 2Y), (2%, 2y, 2Y),
(Y, 2y, xy), (xy, xY, 2Y)-

For V we may proceed as follows: The pairs
xx; yy; xy are replaced by the invariant x2 43?2,
and the 2-vector x2—y2=cos 2y, 2zy=sin 2¢.
In the evaluation of the m-vectors, y; and tpz
may be put equal to .

(@) (@+y?)(@2+y?) (@2 +y?) =1

() (@2+y°) (@ +y?) (@2 —

()

y?)=cos 2y
(224 y2) (22 + y2) 22y =sin 2¢.

From two 2-vectors we find an invariant and

‘19

a 4-vector, and they remain so after having
been multiplied by an invariant 22+ y2:

(22 +y2)[(2% — y2) (22 — y?) + (2xy) (22y) ] =1
(22 + %) (2% — y?) (2% — y?) — (22y) (2zy)] = cos 4y
(22 +y?)[2(x2 — y2)(2ry)] =sin 4y.

Here we find the product of three 2-vectors.
In the last paragraph the product of three
vectors was studied; we. use here the same
method. From the 2-vector and the 6-vector
we note only the first one

(22— y2)(22 — y?) (22 — y?) + (22 — y2) (22y) (22y)
=cos 2y
(22— y2)(2% — y2)(22y) + (2xy) (22y) (2y)
=sin 2.

For =3 or 6 all combinations are zero,
excepted the invariants and the 6-vector.
For a 6-vector is rotated over 6¢p, and n=3
means ¢=120°. An m-vector is an invariant
for an n-tuple axis, if » is a factor of m. The
products are easily translated into tensor com-
ponents, only it should be remembered that
(xz, yy, xx)= (22, xX, YY) etc. For (c) we find

(xx, 22, 22) ~ (202, 2%, YY) — (T2, YY, YY)
+ vy, vy, yy) — 4(xz, 2y, xy) — 4(xz, 2y, 2y) =0
(xx, 2z, Y) — (YY, Yy, y)=0.

The equations may be rearranged as follows:

(xz, 22, 22) + (02, 22, YY) = (T2, YY, YY)
+ vy, vy, yy)

(xz, xy, xy) + (yy, 2y, 2y)
— 3z, yy, yy)

= }(ax, xx, x2)

(xx: xyY, x?/) - (?/y, Xy, xy)= - (xx’ xz, xx)
+ vy, ¥y, yy)

(xz, xz, 2Y) = (yy, Yy, 2Y) = — (22, Yy, xY)
= —(x.% xy, x?/)

We turn now to IV. We borrow from (a),
(b) and (c¢) the invariants, the 2-vector and
4-vector, belonging to (zz,zx) and combine
them with the vector z,y, instead of the in-
variant 22+y2. Putting all combinations zero,
excepted the 3-vectors, we find for n=3, after
rearranging, the equations:

(xxa vy, xz)=
(x?/, XY, xz) = —%(xx, xx, xz)_%(yy, vy, xz)
(wz, xy, yz)= }(xz, 22, 22) + $(yY, Yy, 22)
(yy, xy, yz) = — $(zx, 2z, 22) — L{yy, yy, 22)
(xz, yy, yz)=
(xZ/, xy, 11/2)= ——%(zx, xx, ?/z) _%(yy’ vy, yz)
(xz, 2y, 22) = — }Hex, 22, y2) — 2(yy, ¥y, y=)
Yy, zy, x2)=  F(xx, xx, y2)+ Hyy, vy, y2).

The second set of equations may be found from
the first set by permutation of  and y.

We may add that the number of linear combina-
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tions always equals the number of components, as
follows from their construction. It is not necessary
to look for combinations which might be dependent
on the others. As an example the last case (IV) may
serve. The two invariants give two vectors, after
having been combined with the vector z,y. The
2-vector leads to a vector and a 3-vector, the 4-vector
to a 3-vector and a 5-vector. There are 6 vectors and
12 combinations for 12 components. The three vectors
and the 5-vector, being zero, give 8 equations. These
are solved in (xz, zx, x2), (yy, yy, 22), (ax, ¥z, yz) and
(yy, yy, yz), yielding the 8 relations given above.

APPENDIX
The evaluation of the sums

n—1

S cos? ko sin” ky, p=2x/n,

0
which constitute Table 1, will be given here only for
p=r=2. As

coskp=4}[exp (tkg) +exp (—ikep)]
—sin kg =}i[exp (tkp) —exp (—ike)]
cos?kpsin?ke= —k[exp (4ikp) +exp (—4ikg)—2].

By virtue of

nl . 1—exp 4ing
Py oxp e 1—expdigp 0

we find
n—1

2 cos? ke sin? ke = n/8 .
y

But for n=4 not only is exp4inp=1, but also
exp 4ip=1. Then the derivation breaks down, and
the sum is better calculated directly. In this way
the results in Table 1 are found.

The expressions derived above may be of use too
for the modified Fumi method. Whereas the compo-
sition of two vectors is simple, the case (xxx), where
three vectors had to be combined in § 7, was solved
by trying to find expressions for cos 3y etc. That
this can be done systematically will be shown for

(xzxzxx). Here we meet cost g, cosd y sin p, cos? p sin? y,
etc. The expression we found for the last product
may be written:

cos?ysiny=—}cosdp+3 .
In the same way we find

costy=14 cos 4y+§ cos 2y + 3
sint =} cos 4y—4% cos 29+ 5.

These may be considered as three equations in the
variables cos 4y, cos 2y, 1. Solving them we find

cos 4y =cos? p+sin p—6 cos? p sin? p
cos 2y =cosi p—sinty,

from which a component of a 4-vector and of a
2-vector is found, viz.

(wxzx) + (yyyy) — 6(x2yy)
(xzxx) — (Yyyy)-

By calculating cos3y siny and cosypsin®y, we find

sin 4p=4 (cos? y sin p — cos p sind p)
sin 2p=2 (cos®y sin y+ cos y sin? p)

which yield the remaining combinations, belonging to
the 4-vector and the 2-vector

4(xzzy) —4(2YYY)
2(zzzy) +2(x. yyy) .
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