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Matter tensors, complying with the symmetry of a crystal, may  be found by application of Wigner's 
theorem. For higher-order tensors a modification of Fumi's method is useful for all classes. The 
trigonal and hexagonal classes present no special difficulty. The two methods are illustrated on 
a sixth-order tensor. 

1. Introduction 

The der ivat ion of tensors in the  several crystal  classes 
has been considered by  m a n y  authors.  The simplest  
method  is the  direct  inspection method,  which is 
used in the  tex tbook of Nye (1957 ; cf. Fumi,  1952a, b). 
The application to trigonal and hexagonal classes, 
however, leads to rather intricate calculations. Fumi 
(1952a; cf. Fieschi & Fumi, 1953) has also devised 
a group-theoretical method for these two crystal 
systems. Only the latter method will be referred to 
here as the Fumi method, the term 'direct inspection 
method' being reserved for the former. 

It is possible to modify the direct inspection method 
in such a way that trigonal and hexagonal crystals 
can be treated in the same way as others, at least 
for second-, third- and fourth-order tensors. Fumi's 
method is more powerful for higher-order tensors. 
But here it is not necessary to study each crystal 
class in detail, as he has done. It will be shown that 
quite simple calculations define the tensors for all 
classes at the same time. 

This paper will not deal with detailed group- 
theoretical studies; thus the papers by Jahn (1937, 
1949) and Bhagavantam (1952) will not be used. 
For the sake of completeness, attention is drawn to 
the work of Sirotin (1960), who builds the tensors 
from a collection of so-called basic tensors. 

I. THE MODIFIED DIRECT M E T H O D  

2. Bas ic  concepts  

I t  is well known t h a t  tensor  components  t r ans form 
as products  of coordinates. Let  us denote t emporar i ly  
the  coordinates x, y, z by  x~, i = l ,  2, 3; then  a t rans-  
format ion  of space (e.g. a rotat ion)  is given by  

x~=u~(s)x~ 
where s is the  symbol  for the  t r ans fo rmat ion  we 
consider. Now the t r ans fo rmat ion  of a tensor com- 
ponent  t~j~ is the  same as the  t r ans fo rmat ion  of the  
product  x~xl,jx2, ~ of the  coordinates of three vectors 
r ,  r l ,  r 2 .  

t;i k ~- n ip(  8 )Ujq ( 8 )ukr( 8 )tpqr . 

We m a y  denote this  t rans formed component  by  t~jk(s). 
A m a t t e r  tensor  in a crysta l  mus t  be invar i an t  

with respect  to all s y m m e t r y  operations s of the  class 
we consider. Let  T be an  invar ian t  tensor.  The direct  
method  puts  

for all operations. This method  is in general  very  
simple, bu t  it  is r a the r  unwieldy for t r igonal  and  
hexagonal  classes. Let  us t ake  as an  example the  
ro ta t ion  of 180 ° a round the  Z axis :  

t p t 
X l ~ - - ' X l ,  X 2 ~ - - X 2 ,  X 3 ~ X 3 .  



16 Ol~l T H E  C O N S T R U C T I O N  O F  M A T T E R  T E N S O R S  I N  C R Y S T A L S  

I t  follows tha t  

Tii~ = - Tiie = 0 .  

We m a y  start ,  however, with an a rb i t ra ry  tensor t. 
From this tensor we construct an invar ian t  tensor T 
by  using Wigner ' s  theorem (Fumi, 1952; Wigner,  
1931). We f ind 

T ~  = ~ t~¢~(s) (1) 

summed over all  operations of the class, including 
the ident i ty .  For, as one of these t ransformat ions  is 
appl ied to T,  each te rm of the sum shifts to another  
term, and  the  sum remains  the same. Taking the 
same example  as above, we f ind 

Tii~ = tii2 - til2 = 0 ,  

the f irst  t e rm at  the r ight  hand  belonging to the  
ident i ty ,  the second to the rotation. 

hIow for a group of high order the summat ion  (1) 
would be very  tedious. But  i t  is sufficient to s tudy  
the cyclic groups 2 (C2), 3 (Ca), 4 (C4) and 6 (C~) 
and  in  some cases ~ ($4). This is also the procedure 
of the direct method. Later  on we m a y  consider other 
groups. 

3. N o t a t i o n  

From now on the coordinates will  be denoted b y  
x, y, z. A component  will  be wri t ten:  

t x ,  y ,  z or x, y, z 

if there is no s y m m e t r y  in  the indices. A symmetr ic  
tensor of the second order m a y  be ~ r i t t en :  

txy o r  xy; 

this  tensor t ransforms as the product  r ~ instead of 
rr~ for a non-symmetr ic  tensor. 

The piezoelectric tensor, which is symmetr ic  in 
two indices, m a y  be writ ten" 

txy, x or xy, x 

and this  component  t ransforms as the product  

xyx~ 

belonging to two vectors r, r~. 
The elastic tensor is now wri t ten  as 

(xy, xz) , 

the  brackets  indicat ing tha t  the tensor is symmetr ic  
in the first  and the second pair  of indices. The trans- 
format ion is given by  the product  

xyx~z~ + x~y~xz . 

I t  is, however, s impler  to consider only the first  term, 
belonging to xy, xz. Afterwards the components xy, xz 
and xz, xy  m a y  be replaced by  one component,  being 
equal  for the elastic tensor. 

4. T h e  c o n s t r u c t i o n  of  i n v a r i a n t  t e n s o r s  

Let  us begin wi th  the components xx, yy, xy  of a 
symmetr ic  second order tensor, which is to be invar ian t  
wi th  respect to an n-tuple axis along the Z axis. 
The s y m m e t r y  operations are given by  

x ' = x  cos kq~-y  sin k~ 

y ' = x  sin kq~+y cos k~ (2) 

where cf=2~r/n, and k ranges from 0 to n - 1 .  
Then the t ransformat ion  of the components is the 

same as for the products 

x x ' = x x  cos 9' k q ) - 2 x y  cos k~ sin kq)+yy  sin ~ k~ 

y y ' =  xx sin 2 kcf + 2xy cos k~ sin kq)+ yy cos ~ kq 

x y ' =  xx cos k~ sin kcf + xy (cos 2 k ~ - s i n  2 k~) 

- y y  cos k~ sin k ~ .  (3) 

The invar ian t  tensor components are found by  
summing over k. Higher order tensors will lead to 
sums of higher powers of the sine and cosine functions. 
If these sums are calculated beforehand, the con- 
struction is ra ther  easy. The results of these calcula- 
tions are given in Table 1, and  the method of evalua- 
t ion in the Appendix.  

Wi th  regard to Table 1 it  should be noted tha t  all  
sums containing odd powers of the sine are zero, 
and  also tha t  

Z cos k~ = 0 .  
k 

The blanks  in the columns towards the r ight  hand  side 
mean  tha t  the result  is the same as for the general  
value of n. If the results are different, they  are noted 
under  the appropriate  heading. We m a y  remark tha t  
the columns n = 2 ,  3, 4 of 6 are best calculated by  
direct summation.  

Table 1. Components of the invariant ten~ors 

~b 

q~=2~In (general) n = 2  n = 3  n = 4  

2: cos 2 k 9  ½n 2 
27 sin 2 k~  ½n 0 

2: cos s kq? 0 3 4 
2: cos k~  sin 2 kq~ 0 _ 3  4 

27 cos a kq~ ~n 2 2 
27 cos-" k~  sin-" kq~ ~n 0 0 

2 sln4 k~ ~n 0 2 
2: cos s kq~ 0 15 16 
27 cos 3 k~  sin-" k~  0 8 16 
27cos k~  sin 4 k T 0 _ 9  16 

Z cos s kq? 5~n 2 2 1 3 3 1 6  2 

27 cos 4 k~  sin-" k T ~ n  0 ½ "i62 0 
27 cos e k~  sin 4 kT ~ n  0 ½ "169 0 

27 sin. k~ 6~ 0 i . ~  2 

n = 6  

8_3 
16 

16 
2 
16 
2_27 
16 

The general derivat ion is useful for devising those 
values of n where different sums are found. 
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If  this  table  is applied to the expressions (3) we 
f ind (omitt ing the factor n) 

Txx = a t ~-(tzz+ uu) 

Tuu = ½(t~z + tuu) = Txx 

T~u=0;  

only for n =  2 we f ind no relations between the three 
components.  

As n is a rb i t ra ry  we m a y  put  also n = ~ ;  this  gives 
the tensor invar ian t  for a space of cylindrical  sym- 
metry .  Thus, the blanks  in the  last  four columns 
indicate  tha t  the tensor components constructed with 
those sums possess the same properties as those in a 
cyl indrical  space. 

5. S o m e  e x a m p l e s  

I t  will be sufficient to s tudy  the elast ici ty tensor 
(xx, xx). The 21 components will  be considered 
separately after having been classified according to 
the number  of z's appear ing in the components.  

(1) (zz, zz) is invar ian t  and  (xz, zz) and (yz, zz) are 
zero. 

(2) (xx, zz), (yy, zz) and (xy, zz) have the same prop- 
erties as the symmetr ic  tensor of the second order. 
The same is t rue for (xz, xz), (yz, yz) and (xz, yz). 
With  exception of class 2 (C2) we f ind tha t  the first  
two components of each set are equal, and  the th i rd  
is zero. 

(3) (xx, xz), (xx, yz), (yy, xz), (yy, yz), (xy, xz), (xy, yz) 
are t ransformed as the corresponding components of 
the third-order piezoelectric tensor. This t ransforma- 
t ion is found wi th  help of the products x~xlzl etc. 
The component  z is invar ian t ;  thus  the t ransformat ion  
of x2xl will be sufficient. As all  t ransformed com- 
ponents  possess products of the th i rd  degree, they  
mus t  be zero, as m a y  be seen from Table  1, except 
for n =  3. In  this  case we proceed as follows. 

(x2xlzl)(lccf) = (x 2 cos 2/c~--2xy cos/c~ sin/c~ 

+y~ sin 9 ]c~)(xl c o s / c ~ - y l  sin ]c~)zl. 

When  working out this  expression, we need retain 
only the terms wi th  even powers of the sine. Thus 
x 2 has only to be mul t ip l ied  by  xl etc. The result  is 

3 2 3 3 T(xx, xz) = xt(xx, xz) - . ~t(xy, yz) - -  ;~t(yy, xz) • 

From 

(xyylz l )  (kcf) = [x 2 cos k~ sin k c f + x y  (cos 2 k ~ -  sin 2 k~) 

_y2  cos k~ sin k~](xl sin k ~ + y l  cos k~)zl 

we f ind 

3 3 3 ~t (yy ,  xz) xz) • T ( x y ,  yz) = - ~ t (xx ,  xz) + 2 .  ~ t ( xy ,  yz) -[- = - -  T ( x x ,  

The f inal  result  is 

T ( x x ,  xz) = - -  T ( x y ,  yz) - -  - T ( y y ,  xz) 

T ( y y ,  yz) = - T ( x y ,  xz) = - T ( x x ,  yz) • 

(4) (xx, xx), (xx, yy), (yy, yy), (xx, xy), (yy, xy), (xy, xy) 
will contain in their  t ransforms terms of the fourth 
degree in the gonlometric functions. Their  properties 
will  be the same for all  axes, except n = 2  or 4. The 
general  case will  exhibi t  a new feature. 

For (xx, xx) we find, omit t ing the factor n 

at it Y ( x x ,  xx)  ---- ~- (xx, xx)  Aft g (xx, yy)  "~- ½t(xy,  xy)  

"}- ~ t ( y y ,  at xx)  + g (y$,, yy)  

from the product  xZx~. 

Now t(~x,uu)=t(uu, xz). Moreover we shal l  f ind in all  
equations the  same factors for (xx, xx) and for (yy, yy), 
and we put  

t ( zx ,  xx)  -{- t (yy  , yy)  = 2t'(xx, xx) • 

For T(uu, uu) we f ind  the same expression; thus  

T(~ ,  ~)  T(uu, uu) ~t (xx, ~x) + l t (~ ,  uu) + ½t(xu, ~u). 

In  the  same way we derive 

T(xx, uu) = ¼t'(~, x~) + ~t(~, uu) ~ t - -  -,2 ( x y ,  x y )  

1 t 1 1 - -  ~ t ( xy ,  x y ) .  T ( x y ,  xy)  = 4t  (xx, xx)  ~It(xx, yy) -{- 

T h e r e  would not be any  relat ion between the three 
components,  if these equations were independent .  
But  the de te rminan t  is zero. If  we sti l l  t ry  to solve 
t' from these equations in T(~x, xx), T(~x, uu) and T(~u, ~u) 
we f ind in  the numera tor  

¼T(~, xx) - ~T(xx, uu) - ½T(zu, xu) , 

and as the denominator  is zero, being the de terminant ,  
the form given above must  be zero too, yielding the 
well known relat ion between the three components.  

The same method  m a y  be applied to higher-order 
tensors, e.g. (xx, xx, xx), but  this  can be bet ter  post- 
poned to par t  II.  

6. O t h e r  c l a s s e s  

The evaluat ion of tensors which are invar ian t  wi th  
respect to 4 ($4) does not  differ from tha t  for 4 (C4) if 
the number  of z's is even. If a component  contains 
an  odd number  of z's, the  sum ~ ( -  1)kcosPk~ s inrk~ 

k 

has to be evaluated.  This is readi ly  done for this  
s imple rotation. The method does not  differ from 
the direct method for other classes. I t  will suffice 
to give two examples.  The class 32 (D3) has a group 
of 6 elements,  which m a y  be wr i t ten  as the product  
of three elements,  belonging to a t e rnary  axis, u, 
and  two elements v, belonging to a d iad  axis along 
the X axis, s = uv. 

The elements u are the ident i ty ,  the rotat ion of 
120 ° and of 240 °, whereas v s tands for the iden t i ty  
and the rotat ion of 180 ° . 

We evaluate  
T ' = ~ Y t ( u )  

u 

which is the invar ian t  tensor with respect to 3. 
Then the tensor T is found by  

A C 1 7 - - 2  
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T - -  _,Y T'(v) = 2:t (vu) 
Y 

which means in this  case t h a t  all components,  for 
which the  number  of y and z together  is odd, are 
cancelled. Of course the  summat ion  over v may  be 
done first, as vu  and uv  give the  same elements of 32. 

From the  class 222 we pass to 23 (T) by mul- 
t ip lying with the  elements of a t e rna ry  axis along the 
body diagonal : 

x ' = x ,  y ' = y ,  z ' = z  

x '  = y,  y '  = z, z' = x 

x ' = z ,  y ' = x ,  z ' = y  , 

which means t h a t  the tensor is found from the tensor 
for 222 by summing a component  with its t ransformed 
ones. These are found by cyclic pe rmuta t ion  of the 
indices x, y and z. 

II. THE MODIFIED FUMI METHOD 

7. Description of the method 

The method  described above constructs l inear  com- 
binat ions of tensor components  which are invar i an t  
for the  group we consider. 

:Now we may  f ind other  combinations,  independent  
of the  invar ian t  ones, and these combinat ions must  
be zero. This is the method of Fumi,  but  we shall  
derive these combinat ions in another  way. 

We need only to consider coordinates x and y, 
and the cyclic groups. For other  classes the method  
explained in § 6 will serve. 

Theorem 

The tensor components  can be combined into pairs 
of l inear combinations,  which, considered as vectors, 
ro ta te  over an angle m~, ( m - 2 ) ~ ,  . . . ,  ~ or 0, if the 
space x y  is ro ta ted  over an  angle ~, and the  order 
of the tensor in x and y is m. We will refer to them 
as m-vectors. A 0-vector is an invar ian t  for each 
rota t ion,  and  may  appear  single. 

The proof follows from the method of construction.  
The second order tensor has the components  

x, x; x, y; y, x; y, y. 
We write 

x-- r cos ~, y = r sin v/ 

then a rotation means that ~p is replaced by ~p÷ ~. 
The second order tensor is t ransformed as the  

product  xx~ etc. 
I t  follows t h a t  

x x l  + yy~ = rr~ cos (y~- ~ )  

x x l  - yy~ = rr~ cos (~ +y;1) 

x y l  + yx~ = rr~ sin (y; + y~) 

xy~ - y x l  = rr~ sin (V;~ - ~ )  • 

Ro ta t i on  means t h a t  ~o is added to y~ and to y~; 
thus  the first and last  combinat ion are invar iants ,  

the  second and th i rd  form a 2-vector. These are zero 
for an  a rb i t r a ry  rota t ion,  and we f ind for the  tensor  
components  : 

x , x = y , y ,  x , y = - y , x .  

But  this is not  t rue  if ~- -180  °. Then the double 
ro ta t ion  is equivalent  to the ident i ty ,  the  four com- 
binat ions are invar iants ,  and no re la t ion exists 
between the tensor components.  We remark  t h a t  the  
factors r, rl are not  necessary, and  they  will be left out. 

The symmetr ic  tensor leads to 

x 2 d - y  2 = 1 

x 2 - ye -- cos 2 yJ 

2 x y  = s i n  2yJ. 

Except  for ~ = 1 8 0  °, the 2-vector must  be zero, 
which yields:  

x x = y y ,  x y = O .  

We tu rn  now to the piezoelectric tensor xx ,  x,  which 
is t ransformed as the  product  x2xl.  We s tudy  the  
products  of the  inva r i an t  x ~ + y  2 and the  2-vector 
x e - y  2, 2 x y  with the vector  xl, y~. The result  is 

(x 2 + y~)xl = cos ~01 

(x ~" + y2)yl = sin y;1 

(x 2 - y 2 ) x 1 - 2 x y y l  = cos (2yJ+ ~1) 

2 x y x l  + (x ~ -  y2)yl = sin (2yJ + y~l) 

(x 2 - y2)xl + 2 x y y l  = cos (2v 2 -  ~1) 

2 x y x l  - (x2 - y2)yl = sin (2yJ- yJ1) 

with two vectors and one 3-vector. The last  four are 
found in the same way as above, the  vector  x, y being 
replaced by the 2-vector: cos2~, sin2yJ. In  the  general 
case all combinat ions mus t  be zero, and all tensor 
components  are zero too. But  for n = 3  the  3-vector 
is an invar iant ,  and we are left with 

xx ,  x + y y ,  x = 0 ,  xx ,  y + y y ,  y = 0  

xx ,  x -  yy ,  x + 2xy ,  y = 0 

2xy ,  x - x x ,  y + y y ,  y = 0  

from which the well known propert ies result.  
Our last  example will be the  symmetr ic  third-order  

tensor with four components,  viz. 

X X X  a S  X s - - c O s  s 

x x y  as x~y = cos ~ v/s in 

x y y  as x y  2 = cos yJ sin s 

y y y  as yS=s inS  yJ. 
From 

cos 3~p = cos a y~- 3 cos ~ sin 2 yJ 

sin 3~ = 3 cose VJ sin ~ -  sin s ~v 

we f ind the  3-vector x x x - 3 x y y ,  3 x x y - y y y .  
The components  of the vector  are 

x x x  + x y y  and x x y  + y y y  

and for n =  3 only these combinat ions  are zero. 
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8. A s i x t h - o r d e r  t e n s o r  

We shall apply  the method  to the tensor  (xx, xx, xx) 
which is symmetr ic  in the  three pairs  xx. As before, 
we classify the  components  according to the  number  
of z's. I t  is seen a t  once t h a t  (zz, zz, zz) is invar ian t  and 

(xz, zz, zz)= (yz, zz, zz)= O . 
F u r t h e r  

I(a) 

I(b) 

II(a) 

II(b) 

III(a) 

Ill(b) 

IV 

(a) 

(b) 

(xx, zz, zz), (yy, zz, zz), (xy, zz, zz) 
have the  same propert ies  as xx; yy; xy. 

The same is t rue  for 
(xz, xz, zz), (yz, yz, zz) and  (xz, yz, zz). 

(xx, xz, zz), (xx, yz, zz), (yy, xz, zz), (yy, yz, zz), 
(xy, xz, zz) and (xy, yz, zz) t r ans form as xx, x 
etc., the  piezoelectric tensor.  

(xz, xz, xz), (xz, xz, yz), (xz, yz, yz), (yz, yz, yz) 
t rans form as (xxx) which we considered in § 7. 

(xx, xx, zz), (xx, yy, zz), (yy, yy, zz), (xx, xy, zz), 
(yy, xy, zz) and  (xy, xy, zz) m a y  be replaced by  
the  elastic tensor (xx, xx). 

(xx, xz, xz), (xx, yz, yz), (yy, xz, xz), (yy, yz, yz), 
(xx, xz, yz), (xy, xz, xz), (yy, xz, yz), (xy, yz, yz) 
and (xy, xz, yz) represent  the  tensor  (xx, x, x), 
which m a y  be t r ea ted  by  both methods.  

The result  is for the general  case, including 
n = 3  or 6: 
(xx, xz, yz)= (xy, xz, xz)= (yy, xz, yz)= 

(xy, yz, yz)= 0 
(xx, xz, xz)= (yy, yz, yz) 
(xx, yz, yz )= (yy, xz, xz) 
(xx, xz, x z ) -  (xx, yz, yz)=2(xy ,  xz, yz) . 
This is the  same as I I I (a ) ,  if we replace 
(xx, yz, yz) and  (yy, xz, xz) by (xx, yy, zz) etc. 

(xx, xx, xz), (xx, xx, yz), (xx, yy, xz), (xx, yy, yz), 
(yy, yy, xz), (yy, yy, yz), (xx, xy, xz), (xx, xy, yz), 
(yy, xy, xz), (yy, xy, yz), (xy, xy, xz), (xy, xy, yz). 
These components will be zero, in vi r tue  of 
Table 1. Only for n = 3 (and n = 5) this will not  
be the  case. The Fumi  method  is be t ter  suited 
to the  s tudy  of this tensor. The same is t rue  for:  

(xx, xx, xx), (xx, xx, yy), (xx, yy, yy), (yy, yy, yy), 
(xx, xx, xy), (xx, yy, xy), (yy, yy, xy), (xx, xy, xy), 
(yy, xy, xy), (xy, xy, xy). 
For  V we m a y  proceed as follows: The pairs 
xx; yy; xy are replaced by  the  invar ian t  x 2 + y2, 
and the  2-vector x e - y 2 = c o s  2y~, 2 x y = s i n  2v 2. 
In  the  evaluat ion of the  m-vectors,  ~fl and ~f2 
m a y  be pu t  equal to v 2. 

(x 2 + ye)(x 9 + y~)(x 2 + y2) = 1 

(x 2 + y2) (x 2 + y~) (x 2 _ y2) = cos 2 yJ 
(x2+y2)(x2+y~)2xy = s i n  2yJ. 

(c) F rom two 2-vectors we find an invar ian t  and 

a 4-vector, and they  remain  so af ter  having 
been multipl ied by an invar ian t  x 2 +y2.  

(x 2 + y2)[(x 2_  y2)(x 2 _ y2) + (2xy)(2xy)] = 1 
(x 2 + y2)[(x2 - y2)(x2 - ye) - (2xy)(2xy)] = cos 4y~ 
(x 2 + y2)[2(x2 - y2)(2xy)] = sin 4% 

(d) Here  we find the product  of three 2-vectors. 
In  the  last  pa rag raph  the product  of three 
vectors was s tudied;  w e  use here the same 
method.  F rom the 2-vector and the  6-vector 
we note only the f irs t  one 

(x 2 _ y2)(x2_ y2)(x2 _ y2) + (x~ - y2)(2xy)(2xy) 
= cos 2~ 

(x 2 -  y2)(x2 - y2)(2xy) + (2xy)(2xy)(2xy) 
= s i n  2yJ. 

For  n = 3  or 6 all combinat ions are zero, 
excepted the invar ian ts  and the  6-vector. 
For  a 6-vector is ro ta ted  over 6~, and n = 3  
means ~ = 1 2 0  °. An m-vector is an invar ian t  
for an n- tuple  axis, if n is a factor  of m. The 
products  are easily t rans la ted  into tensor com- 
ponents,  only it  should be remembered  t h a t  
(xx, yy, xx )=  (xx, xx, yy) etc. For  (c) we f ind 

(xx, xx, x x ) -  (xx, xx, y y ) -  (xx, yy, yy) 
+ (yy, yy, yy) - 4(xx, xy, xy) - 4(xx, xy, xy) = 0 

(xx, xx, x y ) -  (yy, yy, xy )=  O. 

The equations m a y  be rear ranged  as follows: 

(xx, xx, xx) + (xx, xx, yy) = (xx, yy, yy) 
+ (yy, YY, YY) 

(xx, xy, xy) + (yy, xy, xy) = l (xx, xx, xx) 
-½(xx, yy, yy) 

(xx, xy, x y ) -  (yy, xy, xy )= - ( x x ,  xx, xx) 
+ (yy, YY, YY) 

(xx, xx, xy )=  (yy, yy, xy )=  - ( x x ,  yy, xy) 
-- -(xy, xy, xy). 

We tu rn  now to IV. We borrow from (a), 
(b) and (c) the  invar iants ,  the 2-vector and 
4-vector, belonging to (xx, xx) and combine 
them with  the vector  x, y, instead of the in- 
va r ian t  x2+y  2. Put t ing  all combinations zero, 
excepted the  3-vectors, we find for n = 3, a f ter  
rearranging,  the  equat ions:  

(xx, yy, xz)= 
(xy, xy, xz)= -½(xx ,  xx, x z ) -  ½(yy, yy, xz) 
(xx, xy, yz)= ¼(xx, xx, xz) + ~(yy, yy, xz) 
(yy, xy, yz)= - ~ ( x x ,  xx, x z ) -  ¼(yy, yy, xz) 

(xx, yy, yz)= 
(xy, xy, yz)= -½(xx,  xx, y z ) -  l (yy,  yy, yz) 
(xx, xy, xz)= -¼(xx ,  xx, y z ) -  ~(yy, yy, yz) 
(yy, xy, xz )= ~(xx, xx, yz) + ¼(yy, yy, yz). 

The second set of equations m a y  be found from 
the first  set by  pe rmuta t ion  of x and y. 

We m a y  add t h a t  the number  of l inear combina- 
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t ions  a lways  equals  the  n u m b e r  of components ,  as 
follows f rom the i r  cons t ruc t ion .  I t  is no t  necessary  
to  look for combina t ions  which  migh t  be dependen t  
on the  others .  As an  example  the  las t  case (IV) m a y  
serve. The  two i n v a r i a n t s  give two vectors ,  a f te r  
h a v i n g  been  combined  w i th  the  vec tor  x, y. The  
2-vector  leads to  a vec tor  and  a 3-vector ,  t he  4-vector  
to  a 3-vector  and  a 5-vector .  There  are 6 vectors  and  
12 combina t ions  for 12 components .  The  three  vectors  
and  the  5-vector ,  being zero, give 8 equat ions .  These 
are solved in  (xx, xx, xz), (yy, yy, xz), (xx, xx, yz) and  
(yy, yy, yz), yie ld ing  the  8 re la t ions  g iven  above.  

A P P E N D I X  

The eva lua t i on  of the  sums 

n--1 

~:  cos p k~  s in ~/c~, ~ = 2 ~ / n ,  
0 

which cons t i tu t e  Tab le  1, wil l  be g iven  here  on ly  for 
p = r = 2 .  As 

cos k~  = ½ [exp (ikcp) + exp ( - i/c~)] 

- sin k~  = ½i [exp (ik~) - exp ( - ik~)]  

cos e b~ sin e k~  = - ~ [exp (4ik~) + exp ( - 4ikcf) - 2]. 

B y  v i r tue  of 

n-1 1 - exp 4in~ 
exp 4i/c~ = = 0 

o 1 - exp 4 i~  
we f ind  

n--1 

cos 9'/c~ sin e/c~ = n / 8 .  
3 

B u t  for n = 4  no t  on ly  is exp 4inq)=l ,  bu t  also 
exp 4 i ~ = 1 .  T h e n  the  d e r i v a t i o n  breaks  down,  and  
the  sum is be t t e r  ca lcu la ted  d i rec t ly .  I n  th is  way  
the  resul t s  in  Tab le  1 are found.  

The  expressions der ived  above  m a y  be of use too 
for the  modi f i ed  F u m i  method .  Whereas  the  compo- 
s i t ion  of two vectors  is simple,  the  case (xxx), where 
th ree  vectors  h a d  to  be combined  in  § 7, was solved 
b y  t r y i n g  to  f ind expressions for cos 3yJ etc. T h a t  
th is  can be done sys temat i ca l ly  will be shown for 

(xxxx). Here  we meet  cos 4 yJ, cos 3 ~p sin yJ, cos 2 yJ s in 2 ~p, 
etc. The express ion  we found  for the  l a s t  p r o d u c t  
m a y  be w r i t t e n :  

cos~ ~ sin ~ ~ = - ~ cos 4v; + ~ .  

I n  the  same way  we f ind  

cos a ~ = 1 s cos 4~  + ½ cos 2~  + ~- 

sin 4 = ~ cos 4 ~ -  ½ cos 2VJ + ~-. 

These m a y  be considered as th ree  equa t ions  in  the  
var iab les  cos 4yJ, cos 2~, 1. Solving t h e m  we f ind  

cos 4~  = cos a y~ + sin 4 y J -  6 cos e ~ sin 9' 
cos 2VJ = cos 4 ~ -  s in4 ~ ,  

f rom which  a c o m p o n e n t  of a 4-vector  and  of a 
2-vector  is found,  viz. 

(xxxx) + (yyyy) - 6(xxyy) 

( x x x x ) -  (yyyy). 

B y  ca lcula t ing  cos 3 ~ sin ~ and  cos ~ sin3 ~, we f ind  

sin 4yJ = 4 (cos 3 y~ sin y J -  cos yJ sin 3 F) 

sin 2 ~ = 2  (cosa yJ sin y~+ cos y~ sin 3 ~p) 

which  y ie ld  t he  r ema in ing  combina t ions ,  be longing  to  
the  4-vector  and  the  2-vector  

4(xxxy) - 4(xyyy) 
2(xxxy) + 2(x. yyy) . 
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